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Quantitative zone-axis convergent-beam electron diffraction (CBED) studies of metals. II.
Debye±Waller-factor measurements
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Abstract

Quantitative CBED techniques, such as the
ZAPMATCH zone-axis pattern-matching method [Bird
& Saunders (1992). Ultramicroscopy, 45, 241±251], have
been applied with great success to the accurate
re®nement of low-order structure factors. The major
limitation on the accuracy of the structure-factor
measurements is uncertainty in the Debye±Waller
factors describing the temperature-dependent atomic
vibrations. While X-ray and neutron diffraction tech-
niques are both capable of accurate measurements of
Debye±Waller factors, the frequent use of liquid-
nitrogen-cooled samples in CBED experiments means
that previous measurements are rarely available at the
temperatures required. This has prompted attempts to
determine Debye±Waller factors from electron diffrac-
tion data obtained under experimental conditions that
match those used for the quantitative CBED work. In
this paper, the possibility of extracting accurate Debye±
Waller factors from the low-order re¯ections of a zone-
axis CBED pattern is investigated. In this way, the
Debye±Waller factors and structure factors could be
obtained from the same data set. With this new
approach, it is shown that errors lower than �0.02 AÊ 2

can be obtained for the measurement of Debye±Waller
factors from room- and liquid-nitrogen-temperature
nickel and copper h110i zone-axis data. The results
obtained are compared with previous measurements
and theoretical predictions.

1. Introduction

The technique of convergent-beam electron diffraction
(CBED) has undergone a period of rapid development
in the past 10±15 years. It has been transformed from a
mainly qualitative tool, concentrating on the symmetry
of or the positions of features in the diffraction patterns,
into a truly quantitative technique with direct analysis
of the diffracted intensities. Advances in microscope

technology, such as the introduction of energy ®lters,
coupled with the improved performance of modern
workstations, have greatly enhanced the prospects for
extracting more accurate and more complete informa-
tion from CBED patterns. The increasingly quantitative
nature of the electron diffraction experiments has
spawned a multitude of new techniques for the analysis
of the resulting data.

In principle, CBED patterns contain the same infor-
mation as that available from X-ray and neutron
diffraction experiments. Consequently, a complete
analysis of a CBED pattern should allow for symmetry
determination, lattice-parameter evaluation, and
measurements of Debye±Waller and structure factors.
Considerable progress towards the goal of full infor-
mation retrieval has been made over the years. For
example, symmetry analysis has long been a major
application of CBED (Tanaka, 1989) and lattice par-
ameters have been determined from the positions of
higher-order Laue-zone (HOLZ) de®ciency lines
(Randle et al., 1989). The past few years have seen the
emergence of new quantitative CBED techniques aimed
at a detailed study of the charge density in crystalline
solids through high-accuracy measurements of low-
order structure factors (Spence & Zuo, 1992; Holmestad
et al., 1995; Saunders et al., 1995). The major limitation in
the accuracy of these structure-factor re®nements has
proved to be uncertainty in the Debye±Waller factors
used to describe atomic vibrations (Bird & Saunders,
1992).

There are established techniques for the determina-
tion of Debye±Waller factors based on X-ray and
neutron diffraction (see, for example, Willis & Pryor,
1975). However, the majority of the measurements are
made at room temperature whereas many electron
diffraction experiments are performed at liquid-nitrogen
temperatures to reduce the effects of thermal diffuse
scattering (TDS). In addition, it is dif®cult to determine
the true sample temperature accurately in transmission
electron microscope (TEM) experiments. Thus, even
when measured Debye±Waller factors are available
across a range of temperatures, the selection of the
appropriate value for the quantitative CBED analysis is
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not necessarily an obvious choice. To overcome this
problem, Debye±Waller-factor measurement techniques
based on electron diffraction have been proposed. In
this way, the measurement could be performed under
similar conditions to those used for the quantitative
CBED structure-factor re®nements.

A number of alternative techniques have been
considered. Each has been demonstrated to produce
Debye±Waller factors with reasonable accuracy though
each has drawbacks associated with the experimental
procedure. For example, the critical-voltage effect can
be exploited to perform structure-factor measurements
at two different temperatures and hence allow deduc-
tion of the Debye±Waller factor (Menon & Fox, 1998,
and references therein). However, the low-order struc-
ture factors used for the analysis are often perturbed by
the unknown effects of chemical bonding, which limits
the accuracy of this technique for the determination of
Debye±Waller factors. In addition, the measurement of
the critical voltages requires a high-voltage microscope
operating at up to 1 MV or higher.

Midgley et al. (1998) have shown that it is possible to
apply standard X-ray diffraction analysis methods to
electron precession data such that Debye±Waller factors
can be obtained with relative ease. However, this tech-
nique requires the installation of additional electronics
on a conventional transmission electron microscope to
perform the precession. A more rigorous approach
involving the ®tting of theoretical calculations to line
traces across HOLZ excess lines has been proposed by
Holmestad et al. (1993). In this case, however, the
dif®culty lies in establishing the precise diffraction
conditions for the simulations so that the correct inci-
dent-beam orientation and the appropriate diffracted
beams are considered.

In a recent paper, NuÈ chter et al. (1998) described a
new method for the determination of Debye±Waller
factors based on the close-to systematics technique
already used for low-order structure-factor measure-
ments (Spence & Zuo, 1992). This approach has the
advantage that the experiments are no more dif®cult to
perform than those already required for the low-order
structure-factor studies. The results obtained by NuÈ chter
et al. (1998) for NiAl suggest that this should be a useful
addition to the arsenal of quantitative diffraction tech-
niques.

One disadvantage common to all of the techniques
described above is that the measurements of the
Debye±Waller factors and structure factors require
separate experiments. Thus, it is never possible to
guarantee that the experimental conditions, e.g. sample
temperature, are consistent in the two experiments.
This is important because uncertainty in the Debye±
Waller factor has already been identi®ed as the most
signi®cant source of error in the low-order structure-
factor re®nements (Bird & Saunders, 1992). In this
paper, we describe another alternative method for

re®ning Debye±Waller factors which is related to that
described by NuÈ chter et al. (1998). In our case, we
have chosen to adopt the zone-axis diffraction
geometry used by Bird & Saunders for their structure-
factor measurements (see, for example, Saunders et al.,
1995). Taking nickel and copper h110i zone-axis patterns
as examples, we will investigate the feasibility of
obtaining both structure factors and Debye±Waller
factors from the same zone-axis data. The effects of
different sample thicknesses and temperatures will also
be considered.

2. Debye±Waller-factor measurements by quantitative
CBED

Existing X-ray and neutron diffraction techniques for
the measurement of Debye±Waller factors generally
rely on the assumption that all structure factors are
adequately described by their neutral-atom values
(Willis & Pryor, 1975). For this reason, these methods
usually restrict their analysis to mid- to high-order
re¯ections where bonding effects are minimal. While
these techniques have proven satisfactory in many
cases, there are limitations resulting from the large
volume of interaction with the sample and the neces-
sity for various correction terms in the analysis
(Menon & Fox, 1998).

The increased interest in electron diffraction tech-
niques for the determination of Debye±Waller factors
has a number of motivations. First, with the increas-
ingly quantitative nature of electron diffraction
experiments, the retrieval of accurate structural infor-
mation from electron diffraction patterns is receiving
considerably more attention. Second, because of the
small probe sizes involved in electron diffraction
experiments (of the order of a few nanometres),
corrections for crystal imperfections can be ignored,
which, at least in principle, offers the prospect of
improved Debye±Waller-factor studies. Third, the
introduction of other quantitative diffraction techni-
ques in which accurate Debye±Waller factors are
required for the analysis, such as those for bonding
charge density determinations, means that Debye±
Waller factors are now required under electron
diffraction conditions, i.e. with a very thin sample under
electron beam illumination and often cooled in a liquid-
nitrogen stage.

The principal behind quantitative CBED is that a
theoretical simulation is adjusted until the best ®t is
obtained between the simulation and a set of experi-
mental diffracted intensities. The experimental data
are usually elastic ®ltered to reduce the contributions
of inelastic scattering which cannot be included with
suf®cient accuracy in the simulation. The goodness-of-
®t is measured by the sum-of-squares difference
between the theoretical and experimental intensities,
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where the Iex are the experimental intensities, the Ith are
the calculated intensities, the Iback are a set of back-
ground intensity levels, c is a normalization constant, �2

is the statistical variance of the experimental data, and
the sum is over all Ndata intensities (see Saunders et al.,
1995, for more details).

The goodness of ®t is minimized by adjusting the
scattering potential, sample thickness and the normali-
zation and background constants. The scattering
potential is written as

V�r� �P
g

Vg exp�i2�g � r� exp�ÿBs2�; �2�

where the Vg are electron structure factors, g is a reci-
procal-lattice vector (s � g=2), r is a real-space vector
and B will be referred to here as the Debye±Waller
factor (note that this name is often given to the whole of
the ®nal exponential term).

Two alternative diffraction geometries have been
considered. Spence, Zuo and co-workers use a close-to
systematics geometry which increases the sensitivity of
the data to a speci®c structure factor (see Spence & Zuo,
1992, or Holmestad et al., 1995, for details). Bird &
Saunders opted to use a zone-axis geometry which takes
advantage of the pattern symmetry and the ability to
determine a number of structure factors from a single
pattern (see Saunders et al., 1995, 1999, for details). Both
approaches have been demonstrated to yield low-order
structure-factor measurements with suf®cient accuracy
to investigate bonding effects in crystalline materials.
While these techniques were originally conceived as a
means to determine accurate structure-factor values, it
has been realised that it should be possible to use the
same concept to measure accurate Debye±Waller
factors. In fact, NuÈ chter et al. (1998) have already
con®rmed that such measurements are possible using
the close-to systematics geometry.

In their work, NuÈ chter et al. (1998) chose to adjust
their diffraction geometry by tilting the sample so that
the data should be most sensitive to a medium-order
re¯ection which is well approximated by a neutral-atom
structure factor, i.e. they minimize the effects of the low-
order structure factors which contain bonding informa-
tion, enabling them to re®ne the Debye±Waller factor
instead of the structure factor. The same Debye±Waller-
factor information should also be available from zone-
axis data, with the added bonus that the symmetry of the
pattern at the zone axis gives a powerful means of
evaluating the quality of the data, i.e. local strain or
crystal imperfections which would reduce the accuracy
of the results are immediately evident by a breakdown in
the ideal symmetry of the pattern. However, the analysis
is likely to be complicated by the fact that we cannot
avoid the contributions of the bonding-modi®ed low-
order structure factors. Two approaches to quantitative

zone-axis CBED Debye±Waller-factor determination
have been investigated and are discussed in the next two
sections.

3. Method I: sum-of-squares minimization

The ®rst analysis procedure involves running a series of
pattern-matching calculations (like those previously
used for low-order structure-factor determination) with
a range of Debye±Waller-factor values. In each ®t, the
Debye±Waller factor remains ®xed and the ®t converges
to its best-®t chi-squared (�2) value (note that it is not
possible to include the Debye±Waller factor as a ®tting
variable without a severe degradation in the perform-
ance of the re®nement calculations). The aim is to ®nd
an optimum Debye±Waller factor at which a minimum
in the best-®t �2 value is obtained. Plotting the best-®t �2

as a function of the Debye±Waller factor used for the ®t
produces a curve such as that shown in Fig. 1 (which was
obtained for a �1400 AÊ room-temperature nickel h110i
zone-axis pattern with the {111}, {200}, {220} and {113}
structure factors, thickness and normalization and
background constants included as re®nement param-
eters). This con®rms that there is an optimum value of
the Debye±Waller factor for this data set under these
conditions. The solid curve represents a quadratic
function ®tted through the data points. The optimum
Debye±Waller factor is obtained from the minimum in
this ®tted quadratic curve [in this case 0.34 (2) AÊ 2]. The
question remains as to whether this optimum Debye±
Waller factor corresponds to the true value or whether it

Fig. 1. Plot of the variation in the best-®t �2 [as de®ned by equation
(1)] as a function of the ®xed Debye±Waller factor for an �1400 AÊ

room-temperature nickel h110i zone-axis pattern. The solid line
represents a quadratic function ®tted through the data points. Note
the low values of �2 (a perfect noise-limited ®t being 1.0) which are
typical of those obtained from the nickel and copper data.
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is some compromise value which simply yields the
lowest �2.

For example, the CBED pattern-matching calcula-
tions re®ne a small number of low-order structure
factors while ®xing a larger number of higher-order
structure factors at their neutral-atom values. If too few
low-order structure factors are allowed to vary during
the ®t, then the use of neutral-atom values is likely to
introduce a systematic error resulting from the omission
of bonding contributions. To investigate this error we
repeat the analysis with different numbers of the
bonding-modi®ed structure-factor variables. In this way,
we hope to introduce the bonding effects through the
variable low-order structure factors while optimizing the
Debye±Waller factor via its sensitivity to the ®xed
(neutral-atom) higher-order structure factors. Repeating
the Debye±Waller-factor optimization for a range of
variables from no structure factors (varying only the
sample thickness, normalization and background
constants) up to six structure factors ({111}, {200}, {220},
{113}, {222} and {400}) yields the optimum Debye±
Waller factor as a function of the number of variables (as
shown in Fig. 2 for the same nickel zone-axis pattern). It
is clear that the total omission of bonding contributions
from the low-order structure factors (no structure-factor
variables) results in an overestimation of the Debye±
Waller factor, i.e. the optimized Debye±Waller factor
somehow compensates for the lost bonding information.
When the ®t is given the freedom to adjust the structure-
factor values for the effects of bonding, there is a
complimentary adjustment to the optimized Debye±
Waller factor. The magnitude of the omitted structure-
factor bonding modi®cations is lessened at higher scat-

tering angles, leading to the convergence of the opti-
mized Debye±Waller factor as more variables are
introduced.

These results indicate that the choice of the number of
variables is crucial to the convergence of the ®t at an
acceptable solution. If too few structure factors are
allowed to vary, the optimized Debye±Waller factor will
be subject to errors arising from the omitted bonding
contributions. However, it may not always be possible to
include a suf®cient number of variables to reach this
converged result. As discussed by Saunders et al. (1999),
the sensitivity of the data to the structure-factor vari-
ables is dependent on a combination of the diffraction
geometry, the re¯ections from which we have experi-
mental data, the incident-beam energy and the sample
thickness. For any given sample thickness, there should
be an optimum number of structure-factor variables
(with thicker samples having greater sensitivity). If the
sample is thin then the number of structure-factor
variables to which the data is sensitive may not be
suf®cient to include all of the bonding effects. Thus, the
best solution that can be obtained will still be in¯uenced
by systematic error. Adding more variables only
succeeds in giving the ®t too much freedom so that it
converges to an incorrect (local) solution. The copper
and nickel data studied here are less prone to these
errors because signi®cant bonding effects are only
observed in the ®rst two or three low-order structure
factors, making it generally possible to ®nd a sample
thickness at which a suf®cient number of variables can
be included.

4. Method II: structure-factor intercepts

An alternative strategy for the determination of Debye±
Waller factors is to analyse the best-®t structure-factor
values obtained from the re®nement calculations [an
extension of a technique previously considered by W. G.
Burgess, A. R. Preston, N. J. Zaluzec & C. J. Humphreys
(unpublished)]. As with the sum-of-squares minimiza-
tion method, ®ts are carried out with a range of (®xed)
Debye±Waller-factor values. After conversion from
electron to X-ray structure factors (using the Mott
formula), the best-®t structure factors are plotted as a
function of the Debye±Waller factor used for the ®t. The
re®ned values are then compared with their respective
neutral-atom values (calculated according to Doyle &
Turner, 1968). Where bonding modi®cations are small,
the re®ned structure factor and its neutral-atom coun-
terpart should be in agreement when the appropriate
Debye±Waller factor is used.

An example of this analysis, applied to the same
room-temperature nickel data as considered in x3, is
shown in Fig. 3. The four plots show the variation of the
best-®t {111}, {200}, {220} and {113} structure factors for
Debye±Waller factors in the range 0.28±0.40 AÊ 2. In each
case, the dashed line represents the equivalent neutral-

Fig. 2. Plot of the variation in the optimum Debye±Waller factor as a
function of the number of structure-factor variables included in the
re®nement. The solid curve is interpolated from the data points.
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atom structure factor. It is known that the low-order
structure factors are modi®ed from their neutral-atom
values by the effects of bonding (Saunders et al., 1999).
Thus, the intercept of the best-®t and neutral-atom lines
for the lowest-order structure factors will not yield an
accurate Debye±Waller factor. As higher-order struc-
ture factors are considered, however, bonding effects
diminish and the Debye±Waller factor at which the
intercept occurs should converge towards the correct
value. This behaviour is demonstrated clearly by the
four plots in Fig. 3, where the {111} and {200} intercepts
occur well above 0.40 AÊ 2, while those obtained from the
{220} and {113} structure factors (where bonding effects
are minimal) occur at 0.34 and 0.33 AÊ 2, respectively. If
the approximate magnitude of the bonding contribution
to these structure factors is known, then this uncertainty
in the neutral-atom value can be used to estimate the

error arising from the omission of the bonding term
when determining the intercept point. For the {220} and
{113} intercepts shown in Fig. 3, this would result in
errors of less than 0.01 AÊ 2 in each case.

Another source of uncertainty in the intercept point
arises from errors in the re®ned structure-factor values.
As shown in equation (2), the dependence of the
structure factor on the Debye±Waller factor involves an
exponential term in which the Debye±Waller factor is
multiplied by s2, where s � sin �=�, � is the scattering
angle and � is the electron wavelength. Thus, the
gradient of the structure factor versus Debye±Waller-
factor line increases for higher-order structure factors.
This effect is demonstrated in Fig. 3 where the gradient
increases from the {111} structure-factor plot through to
the {113} plot. Therefore, even if we allow for errors in
the re®ned structure factors of up to 3%, the uncertainty

Fig. 3. Plots of the re®ned low-order structure factors for the�1400 AÊ room-temperature nickel pattern as a function of the Debye±Waller factor
used for the re®nement (top row {111} and {200}, bottom row {220} and {113}). The dashed lines represent the neutral-atom values calculated
according to Doyle & Turner (1968).
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in the Debye±Waller factor determined from the {220}
and {113} intercepts would be no more than 0.02 AÊ 2.

Once again, this technique is dependent on the
sensitivity of the data to the different structure-factor
variables. In order to determine an accurate Debye±
Waller factor, the data must be suf®ciently sensitive to
re®ne structure factors for which the bonding contri-
butions are small. In other words, if the data are only
sensitive to structure factors that are signi®cantly
modi®ed by bonding, then taking the intercept with the
neutral-atom line will be grossly in error. For example, if
we had been able only to determine the {111} and {200}
structure factors for the nickel data considered in Fig. 3,
then we would have obtained a Debye±Waller factor of
0.44 AÊ 2 from the {200} intercept with its neutral-atom
line (whereas a value of 0.32 AÊ 2 would have been
obtained by taking the intercept with a line repre-
senting a bonding-modi®ed structure-factor value of
19.12 e atomÿ1 (as determined by Saunders et al., 1999).

As discussed by Saunders et al. (1999), the sensitivity
of the zone-axis pattern to the {220} and {113} structure
factors in the re¯ections used for these pattern-matching
calculations arises from multiple-scattering effects. Thus,
the sensitivity of our measurements of the Debye±
Waller factor is the result of a second-order effect,
whereas the systematics method of NuÈ chter et al. (1998)
is sensitive to the Debye±Waller factor through a ®rst-
order single-scattering effect. Thus, in principle, the
systematics approach should have a higher sensitivity to
the Debye±Waller-factor information. Unfortunately,
this increased sensitivity is obtained at the expense of
having to perform a separate experiment to determine
the Debye±Waller factor.

5. Discussion

Both the �2-minimization and the neutral-atom line-
intercept techniques have been applied to h110i zone-
axis CBED data acquired from nickel (at room and
liquid-nitrogen temperatures) and copper (at liquid-
nitrogen temperatures). The data were acquired for
sample thicknesses in the range 600±3000 AÊ , using a
Hitachi HF2000 FEG-TEM at the University of Bristol
equipped with a Gatan Imaging Filter. The data were
elastic ®ltered to reduce the contributions of inelastic
scattering to the diffraction contrast.

The results obtained for the different sample thick-
nesses and temperatures are shown in Table 1. All of the
calculations allowed the four lowest-order structure
factors, i.e. {111}, {200}, {220} and {113}, to vary during
the re®nement. The Debye±Waller factors obtained
using the neutral-atom line-intercept method (x4) are
shown for both the intercept of the best-®t {220} and
{113} structure factors with their neutral-atom equiva-
lents. The uncertainty arising from bonding contribu-
tions to these structure factors is minimal and results in
errors of less than 0.01 AÊ 2 in all cases.

A comparison of the results obtained from the two
techniques shows that the neutral-atom intercept
method generally gives a lower value for the Debye±
Waller factor than the �2 minimization. Analysis of the
re®ned low-order structure factors obtained using the
different Debye±Waller-factor solutions suggests that
the Debye±Waller factors obtained from the intercept
method provide a more accurate solution for the
bonding-modi®ed scattering potential, i.e. they show
better agreement with the results of other techniques
(see Saunders et al., 1999). This implies that the Debye±
Waller factors obtained by minimizing the best-®t �2 are
subject to systematic error. One possible explanation for
this error can be found in the behaviour of the other
®tting parameters when the ®ts are repeated with the
different Debye±Waller factors. It has been observed
that the best-®t background and normalization constants
also change as a function of the chosen Debye±Waller
factor. Thus, the Debye±Waller factor and the constant
terms may not act as truly independent ®tting param-
eters. The apparent systematic offset of the optimized
Debye±Waller factor obtained from the �2 minimization
may show that by ®xing the Debye±Waller factor we are
locating the minimum by adjusting the normalization
and background constants. The �2 minimum may not be
a true re¯ection of the quality of the ®t as a function of
the Debye±Waller factor alone. In the same way that
omitting bonding effects leads to an erroneous Debye±
Waller factor, it may also be true that ®xing the Debye±
Waller factor while adjusting the normalization and
background terms may not yield an accurate solution.
Therefore, any attempt to re®ne the Debye±Waller

Table 1. Debye±Waller factors (AÊ 2) determined from
nickel and copper h110i zone-axis CBED patterns at a
range of thicknesses and temperatures using both the �2-

minimization and neutral-atom line-intercept methods

Sample
thickness (AÊ ) �2 minimization

Line intercept

{220} structure
factor

{113} structure
factor

Room-temperature nickel
800 0.33 (2) 0.32 (2) 0.31 (2)
1150 0.35 (2) 0.36 (2) 0.35 (2)
1250 0.37 (2) 0.36 (2) 0.34 (2)
1400 0.34 (2) 0.34 (2) 0.33 (2)
Average 0.35 0.35 0.34

Liquid-nitrogen-temperature nickel
650 0.15 (2) 0.14 (2) 0.13 (2)
1400 0.16 (2) 0.15 (2) 0.14 (2)
1450 0.15 (2) 0.15 (2) 0.14 (2)
2650 0.17 (2) 0.18 (2) 0.17 (2)
Average 0.16 0.16 0.15

Liquid-nitrogen-temperature copper
900 0.23 (2) 0.21 (2) 0.21 (2)
950 0.24 (2) 0.21 (2) 0.21 (2)
3100 0.22 (2) 0.21 (2) 0.21 (2)
Average 0.23 0.21 0.21
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factor from the best-®t �2 values may be limited by our
introduction of background and normalization constants
into the de®nition of the �2 function [equation (1)].

The Debye±Waller factors determined from the
intercepts of the {220} and {113} structure factors show
how the omission of bonding effects can lead to errors in
the position of the intercept point. The structure-factor
measurements discussed by Saunders et al. (1999) indi-
cate that the {113} structure factor of nickel is well
represented by its neutral-atom value, whereas the {220}
structure factor is slightly modi®ed by the effects of
bonding. This is re¯ected in the slightly higher Debye±
Waller factors obtained from the intercept of the {220}
structure factor with its neutral-atom equivalent. In the
case of copper, however, both {220} and {113} are well
described using neutral-atom structure factors. Hence,
the intercept Debye±Waller factors for both structure
factors are in better agreement. Table 2 lists previous
measurements and theoretical predictions for the
Debye±Waller factors of these materials. These include
X-ray, neutron and theoretical results given by Willis &
Pryor (1975, and references therein), and a theoretical
®t to neutron inelastic scattering data by Sears & Shelley
(1991), as republished by Peng et al. (1996). The results
obtained from the {113} intercept method are in good
agreement with those obtained from the data of Sears &
Shelley (1991). There is less agreement, however,
between our results and the other three room-
temperature nickel values shown in Table 2. The
neutron-scattering result of Cooper & Taylor (1969) is
clearly an outlier, while the X-ray and theory values are
slightly higher than our CBED measurements. If zone-
axis CBED re®nements are performed using these
higher Debye±Waller-factor values, then the re®ned
low-order structure factors demonstrate systematic
deviations from the results obtained from other tech-
niques and solid-state theory calculations (see Saunders
et al., 1999). This implies that the use of the accepted
`room-temperature' X-ray value of 0.37 AÊ 2 is not
appropriate for our CBED analysis and demonstrates
the importance, in this case, of making Debye±Waller-
factor measurements directly from the CBED data.

It is apparent from the results shown in Table 1 that
the various data sets acquired from different positions
on the sample and at different sample thicknesses do not

yield totally consistent results. This variation is observed
using both the minimization and intercept methods. The
scatter in the intercept results is larger than that
expected from the uncertainty due to bonding effects in
the neutral-atom reference value. It is possible that the
scatter results from errors in the re®ned structure-factor
values. However, to produce the variations observed in
Table 1 would require errors in the ®tted structure factor
of between 3 and 5%. While this is not totally out of the
question, we believe the errors arising from sources
other than the uncertainty in the Debye±Waller factor to
be much less signi®cant (Bird & Saunders, 1992). In
addition, the consistency of the values given from both
the {220} and {113} intercepts implies that random error
alone cannot explain the variation in the Debye±Waller
factors measured from the different data sets.

If we rule out errors in both the neutral-atom refer-
ence structure-factor value and the re®ned structure
factors then we are left with the conclusion that the
variations in the Debye±Waller factors obtained from
the different data sets are in fact a true re¯ection of the
varying temperature of the material. One possible
explanation for this could be variations in the beam
heating effects for different sample thicknesses and
probe positions. However, the approximate theory given
by Reimer (1997) would appear to discount this option.
Other possibilities are that the sample temperature
varies as a result of ¯uctuations in the actual room
temperature or, in the case of the cooled samples,
through the liquid nitrogen boiling off. The magnitude
of these effects estimated by NuÈ chter et al. (1998), i.e.
around 10 K, could explain much of the variation
observed in our experiments.

Whatever the cause, it is certainly true that the re®ned
low-order structure factors obtained from different
zone-axis CBED patterns are more consistent (both
with each other and with the results of alternative
experimental and theoretical techniques) when each
data set is allowed to determine its own Debye±Waller
factor using the intercept method (as shown by Saunders
et al., 1999). The use of a single averaged Debye±Waller
factor leads to much less satisfactory results. For
example, allowing each of the nickel room-temperature
data sets to ®nd its own Debye±Waller factor using the
{113} intercept results in a 0.6% variation in the {220}

Table 2. Debye±Waller factors (AÊ 2) determined previously from X-ray and neutron scattering experiments and from
theoretical predictions

Material Debye±Waller factor Technique Source

Nickel (room temperature) 0.37 (1) (293 K) X-ray diffraction Inkinen & Suortti (1964)
0.38 (1) (300 K) Fit to inelastic neutron data Barron & Smith (1966)
0.43 (1) (293 K) Neutron diffraction Cooper & Taylor (1969)
0.35 (293 K)² Fit to inelastic neutron data Peng et al. (1996)

Nickel (liquid-nitrogen cooled) 0.13 (110 K) Fit to inelastic neutron data Peng et al. (1996)
Copper (liquid-nitrogen cooled) 0.21 (110 K) Fit to inelastic neutron data Peng et al. (1996)

² Extrapolated from tabulated data
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structure factors re®ned from the different patterns,
whereas ®xing the Debye±Waller factor at the Sears &
Shelley (1991) value of 0.35 AÊ 2 gives a 1.9% variation.
The comparable variations for the liquid-nitrogen-
cooled data are 0.3% when the Debye±Waller factor is
determined from the {113} intercept and 3.4% when the
same Debye±Waller factor is used for all data sets. This
leaves open the question as to whether it is better to use
a more accurate measurement technique to perform
a separate Debye±Waller-factor determination or to
attempt to determine the Debye±Waller factor from the
same data as the structure factors. In the former case,
the improved accuracy of the measurement may be
compromised by the introduction of a systematic error
resulting from temperature differences between the
Debye±Waller and structure-factor experiments. In the
latter case, while this systematic error is avoided, the
random error from uncertainty in the Debye±Waller-
factor measurement is increased. While the data
presented in this paper do not conclusively answer this
question, they do show the need for further systematic
investigations of the relative magnitudes of these
systematic and random errors if the ultimate accuracy of
CBED structure-factor re®nements is to be realised.

6. Conclusions

Two alternative strategies have been considered for
determining Debye±Waller factors from the diffracted
intensities in the low-order re¯ections of an elastic
®ltered zone-axis CBED pattern. In the ®rst, the good-
ness-of-®t between a theoretical simulation and the
experimental data is adjusted by repeating the ®t with
a range of different ®xed Debye±Waller factors. This
analysis produces a clear optimum Debye±Waller factor
for each data set at which the �2 measure of the good-
ness of ®t is minimized. This optimized value will be
subject to errors if bonding effects are ignored by ®xing
the low-order structure factors at their neutral-atom
values. More accurate results are obtained by introdu-
cing the low-order structure factors as variables during
the re®nement in an attempt to include the bonding
effects. However, there is evidence that the Debye±
Waller factor and some of the other ®tting parameters,
i.e. a normalization constant and background terms, act
in unison and that the optimized Debye±Waller factor
may be in¯uenced by the values of these other variables
leading to a systematic overestimate of the Debye±
Waller factor using this technique.

The second approach considers the re®ned low-order
structure factors obtained from the ®ts run with the
range of Debye±Waller-factor values. When bonding
contributions to a speci®c structure factor are small,
then the re®ned structure factor should coincide with its
neutral-atom equivalent when the ®t is performed with
the correct Debye±Waller factor. Bonding effects are
most pronounced for the lowest-order structure factors.

Thus, each ®t must include a suf®cient number of
structure-factor variables that the higher-order variables
are well described by their neutral-atom values. We have
shown, for example, how the {113} structure factor in
nickel and copper can be used to determine an appro-
priate Debye±Waller factor for a given data set. Errors
associated with uncertainties in the bonding contribu-
tion and random errors in the re®ned structure factor
lead to Debye±Waller-factor measurements with an
accuracy of around 0.02 AÊ 2. There is good agreement
between these measurements and those obtained from
neutron inelastic scattering measurements (Sears &
Shelley, 1991).

The variation in the Debye±Waller factors deter-
mined from different patterns (acquired at different
times and positions on the sample) is greater than our
estimated error. Seemingly, this indicates that tempera-
ture ¯uctuations between successive experiments cannot
be ignored. If this is the case, then the use of the same
Debye±Waller factor for the analysis of CBED patterns
acquired under different conditions would introduce
systematic errors in the re®ned structure factors. This
suggestion is supported by the nickel and copper data
discussed here and by Saunders et al. (1999) where
greater consistency between the results obtained from
different CBED patterns (and with the results of other
techniques) is obtained if a separate Debye±Waller-
factor value is determined for each pattern. More work
is required to resolve this issue if we are to achieve the
ultimate accuracy in quantitative CBED experiments.
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